
JOURNAL OF APPROXIMATION THEORY 42, 212-238 (1984)

Spline Quadrature Formulas

STAVROS N. BUSENBERG AND DAVID FISHER

Department of Mathematics, Harvey Mudd College, Claremont, California 91711, U.S.A.

Communicated by Oved Shisha

Received November 17, 1980; revised July 25, 1983

I. INTRODUCTION

In this paper we develop quadrature formulas for splines with equispaced
knots. For special classes of splines, we give simple explicit expressions for
the weights in the quadrature formulas in terms of the zeros of the
Euler-Frobenius polynomials and show that these weights are positive. The
zeros of these polynomials of odd degree up to 15, are given by Nilson [2]
and by Schoenberg and Silliman [4] to a high degree of accuracy. The
general quadrature formulas can also be used to obtain the cubic natural
spline quadrature formula given in Ahlberg, Nilson and Walsh [I,
pp. 44-47] and the semicardinal odd order natural spline formula of
Schoenberg and Silliman [4].

Two of the quadrature formulas that we derive can be stated as follows.
Let S be a spline of odd degree m with knots at the integers 0, I,..., n.
Suppose that S(U)(O+) = S(UI(n~) = 0, for 2 ~ 2i ~ m - I, where S(k)
denotes the kth derivative of S. Then

n ( 12 m
-

I

J S(x) dx = (S(O) +S(n)) -2 +-- L (.17-.1;)/[(.17+ 1)(.1;-1)])
o m+ I ;=(m+I)/2

n-I 2 m-l

+ L S(j)(I---1 L (A7- j +A{)/(A7 + I)),
j~1 m+ ;=(m+II/2

where Ai' i= I,..., m - I with Am-I < Am - 2 < ... < Al < 0, are the zeros of
the mth Euler-Frobenius polynomial. Moreover, the weights in this
quadrature formula are positive.

If S is an integrable semicardinal spline on [0, 00) with knots at the
integers and with S(20(0+) = 0 for 2 ~ 2i ~ m - I, then
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foo Sex) dx = S(O) (1/2 +~1 ~l 1/(A i - 1»)·
o m + ;=(m+l)/2

00 ( 2 m-l
+ L S(j) 1 - -- L Ajj

•
j=l m + 1 ;=(m+ 1)/2 )
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The weights in this quadrature formula are positive. Both of these formulas
do not involve derivative data at the interval end points and their proof in
Theorems 2 and 4 below is one of the main objects of this paper. The
composite trapezoid formula which is the exact quadrature formula for
splines whose odd derivatives vanish at the end points also does not involve
derivative data. This is also the case with the semicardinal formula of
Schoenberg and Silliman [4]. In the case of the finite interval, we derive in
Theorem 9 an explicit quadrature formula for splines whose even derivatives
vanish at one end point and whose odd derivatives vanish at the other end
point. These explicit quadrature formulas are based on the fact that, for these
special classes of splines, the values of the derivatives at the interval end
points can be expressed in terms of the values of the spline at the knots and
finite powers of the matrix T= (tij) = (m - (7» with m=°if i >j. These
expressions are given in Theorems 6, 8 and 9. This matrix T plays a basic
role in the work of Nilson [2] on spline interpolation. Our quadrature
formulas rely on an expression, given in Theorem 7, for the trace of any
analytic function of T.

The paper is organized as follows. The necessary definitions and the main
results are collected in the next section. The third section contains the proofs
of these results. The fourth section is devoted to numerical results and to
remarks on extensions.

2. SPLINE QUADRATURE FORMULAS

We consider mth order splines S with knots at the integers 0, 1,... , n
defined by

(i) SEem - 1(0, n), that is, S and its derivatives of orders up to m - 1
are continuous on (0, n);

(ii) S restricted to the interval [j - l,j] is a polynomial of degree
m ~ 1, for j= 1,2,..., n.

Letting B i be the ith Bernoulli number (Bo = 1, B 1 = -1/2, B 2 = 1/6,
B 3 = 0, B 4 = -1/24, B 2k - 1 = °for k > 1), we define the (m - I)-dimensional
column vectors b, d and e to have components bi' di and e;. respectively,
given by
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We denote the corresponding row vectors by b T
, d T and eT. We define I, J

and T to be the (m - 1) X (m - 1) matrices with entries given by

with ({) = 0 if i >j and fJij being the Kronecker delta.
Let SUl(O+) and SU)(n-) denote thejth right and left hand derivatives of

S at 0 and n, respectively. Let u and u* be the (m - I)-dimensional column
vectors with respective components

and j = 1, 2,..., m - 1.

We call u and u * the "left end vector" and the "right end vector" of S. With
this notation, we can state our first result.

THEOREM 1. Let S be an m th order spline on [0, n l with knots at the
integers 0, 1,..., n; n;;:: 1. Then the end vectors u and u* of S satisfy the
relations

n-l
(Tn +J)(u +u*) = -2 I S(k)(Tk + rn- k

) e - 2(S(0) + S(n))
k=l

X (rn - T)(T-I)-l e,

n-I

(rn - J)(u - u*) = -2 L S(k)(Tk
- rn- k

) e - 2(S(0) + S(n))
k=1

X (Tn + T)(T-I)-l e.

(1)

(2)

The proof of this result will be given in the next section. The integral of S
is, of course, given by the Euler-McLaurin formula

n n-lf S(x) dx = I S(k) + (S(O) + S(n))j2 - bT(u + u*). (3)
o k= 1

Relations (1) and (2) distinguish an (m - 1)j2-dimensional hyperplane in
which u + u * and u - u * lie. This hyperplane will be explicitly described in
Theorem 10 of Section 4. For certain special subspaces of splines, (1) and
(2) can be used to calculate u + u * and then (3) yields an explicit
quadrature formula. We will proceed to do this for one class of splines after
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introducing some notation. We note that our proof of (1) and (2) also gives
a direct proof of (3).

We follow the terminology of Nilson [2] and define the mth order Hille
polynomial by

Pm(x) = (1 - x)m+ I (d/d log x)m(1/(1 - x)).

The mth order Euler-Frobenius polynomial om is then given by

From this definition, it readily follows that

01(X) = 1, 02(X) = 1 + x,

om(x) = mxom_t(x) +(1- x) d(xom_1(x))/dx.

The zeros Aj of om(x) are real, negative and distinct [2] and if enumerated in
decreasing order Am_I < Am- 2< Am- 3 < ... < AI < 0, then AjAm_j = 1 for
j= 1,2,... , m - 1 [2, p. 444].

We define a spline S on [0, n] to be "even alternating" if SU) (0 +) =

SU)(n-) = °for j even.
We can now give our next result.

THEOREM 2. Let S be an even alternating spline of odd order m on
[0, n] with equispaced knots at the integers 0, 1,..., n. Then

.n 12 m - I

j S(x)dX=(S(0)+S(n))(-2+-- 2.: (A7- A;)/[(A7+ 1)(A;-I)])
o m + 1 ;=(m+ 1)/2

n-l 2 m-l

+ 2.: S(j) ( 1 - -- 2.: (A7-
j + A{)/(A7 + 1)), (4)

j=1 m+l;=<m+1)/2

where A;, i = 1,... , m - 1 are the zeros of the m th order Euler-Frobenius
polynomial.

When m = 3, the even alternating spline reduces to the natural cubic
spline. In this case the weights in formula (3) are the same as those given for
natural cubic splines in [1, pp.46-47].

In the next section we shall see that the A; appearing in Theorem 2 are the
eigenvalues of the matrix T. This fact can be used to obtain the following
asymptotic form of Theorem 1.

640/42/3-2
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THEOREM 3. Let m be an odd integer and let S be an integrable m th
order semicardinal spline on [0, (0) with knots at the integers 0, 1, 2,.... Let
Pi and Q denote the projections

Pi = n (T - AiI)/(Ai - Aj ),

j",i

Then

00 00f Sex) dx = S(0)/2 + L S(k) - bTu,
o k= I

where u satisfies the equation

00

QJu = -S(O) Q(e +d) - 2 L S(k) QTk e.
k=1

(5)

(6)

(7)

For even alternating splines the corresponding asymptotic result yields a
simple explicit formula which we give in our next result.

THEOREM 4. Let m be an odd integer and let S be an integrable m th
order even alternating semicardinal spline on [0, (0) with knots at the
integers 0, 1,2,3,.... Then

foo Sex) dx = S(O) (1/2 +~ II l/(A i - 1»)
o m+ i=(m+I)/2

00 ( 2 m-I

+ L S(j) 1 - -- L Ai j
,

j=1 m+1 i =(m+I)/2)

where Ai' i = 1, 2,... , m - 1, are the zeros of the m th order Euler-Frobenius
polynomial.

The above quadrature formulas yield the following result for the weights.

THEOREM 5. The weights in the quadrature formulas for the even alter­
nating splines in Theorems 2 and 4 are all positive.

As seen by the quadrature formula (4) of Theorem 2, Eqs. (1) and (2) of
Theorem 1 can be explicitly solved for certain classes of splines and u and
u* can be expressed in terms of the values of S at the knots without the use
of derivative data. This is indeed the case for even alternating splines for
which we get the following results.
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THEOREM 6. Let m be an odd integer and let S be an even alternating
spline of order m on [0, n1with knots at the integers 0, 1,..., n. If u and u*
are the end vectors of S, we have

u = -(rn - T-n)-t [2 :~: S(p)(Tn-P - TP-n) e - S(O)(Tn+ T- n)d

+ 2S(n) d ] - S(O) e, (8)

u* = -(rn - T-n)-t [2 :~: S(p)(TP - T-P) e - S(n)(Tn+ T- n)d
+ 2S(0) d ] - S(n) e. (9)

The relations (8) and (9) completely determine the even alternating spline
of order m which interpolates the points (j, S(j))j = 0, 1,..., n. They can also
be used to obtain the explicit quadrature formula (4) for such splines. We
take up the details of the derivations of these results in the next section.

The matrix T plays a basic role in the derivation of our results as well as
other questions concerning splines (see the results in [2 D. The following
result concerning this matrix T is fundamenttal in the proof of Theorems 2
and 4 above, and is of independent interest.

THEOREM 7. IfF is an analyticfunction in a deleted neighborhood of the
origin, then

2(m + 1) bTF(T) e = -Trace F(T).

Alternatively,for the projections Pi defined in (5)

(10)

1~ i~ m - 2. (11 )

3. DERIVATION OF THE QUADRATURE FORMULA

In this section we give the proofs of the results that were stated above. We
start by establishing three lemmas that give some properties of the matrix T.
We then give the proof of Theorem 6, which follows easily from these
lemmas. The proofs of Theorems 1 and 3, as well as a proof of Eq. (3) based
on Theorem 1, are given next. We then proceed to prove Theorem 7, which is
a key element in establishing the remainder of our results. The section
concludes with the proofs of Theorems 2, 4 and 5.

We start by considering some properties of the (m - 1) X (m - 1) matrix
T which are essentially already in the literature but which we collect for
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convenience in Lemma 1, below. We first introduce some notation.
Throughout this paper m will be an odd positive integer.

Let Sp be an mth order spline with knots at the integers i, 0 ~ i ~ n, and
such that Sp(i) = 0iP' We will call Sp a "delta spline" at p. Let up(i) be the
column vectors whose jth component is S~)(i)/j!, j = 1, 2,..., m - 1, with S~)

denoting the jth derivative of Sp' Let u:(i) be the column vector whose jth
component is (-I)j S~)(i)/j!, j = 1,2,... , m - 1. We can now state Lemma 1.

LEMMA 1. The spectrum of T consists of the (m - 1) distinct zeros Ai'
i= I, ...,m-I, of the mth Euler-Frobenius polynomial om' So, Am-I <
Am- 2 < ... <Al <0 and AiAm- i = 1. The eigenvector v(i) corresponding to
the eigenvalue Ai of T has components

v\i) = (-Iy-I (m - 1) (1 _ Ay-I° .(,.1..)
J j _ 1 J m-J l'

j = 1, 2,..., m - 1.

Finally, T is similar to its inverse: T- I = JTJ (trivially, J = r I) and

TUp(k) = up(k + 1),

Tu:(k + 1) = u:(k),

o~ k ~ p - 2, p + 1~ k ~ n - 1, (12)

o~ k ~ p - 2, p + 1 ~ k ~ n - 1. (13)

Proof Since Sp is an m th order spline which vanishes at k for k 1= p,
then if O~k~p-2 or p+ 1~k~n-I, and xE [k,k+ 1] we have
Sp(x) = Lj=1 [x-kVS~)(k)/j! and Sp(k+ I)=Lj=IS~)(k)/j!=O. The
spline matching conditions at the knots are S~)«k + 1) - ) = S~)«k + 1) + ),

yielding the relations
m

I S~)(k)/(j - i)! = S~i)(k + 1).
j=i

Since s~m)(k)/m! = - Lj=i l S~)(k)/j!, we obtain the relation

I~i~m-1.

Recalling the definitions of T, up and u: we see that this is equivalent to
TUp(k) = up(k + 1), and Eq. (12) holds. A similar argument shows that (13)
also holds.

From the definitions of up and u: we see that -Ju:(k) = up(k). From this
and (12) we obtain the relations TJu:(k) = Ju:(k + 1), and hence,
TJTJu:(k) = Tu:(k + 1), 1 ~ k ~p - 2, p + 1 ~ k ~ n - 1. For k = 1, this
yields TJTJu:(I) = Tu:(2), and using (13) with k= 1 we have
TJTJu:(I) = u:(I). Since u:(I) is an arbitrary (m - 1) vector we conclude
that T- I = JTJ. An immediate consequence of this fact is that if A is an
eigenvalue of T then so is 1/..1..
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These simple considerations show that the operator T translates the vector
up(k) at the knot k to up(k + I) at the knot k + 1. Nilson [2] considers a
related operator S (denoted by Tin [2]) with entries sij given by

sij = m!/[j!(m - i)!] if i >j;

sij= I/(j-I)! -m!/[j!(m-I)!] if i<,j.

If we let Y be the (m - I) X (m - I) matrix with entries Yij = j! oij, then it is
immediately seen that the (i,j)th entry of y- I Sy is

e)-(7),
- (7),

i <'j,

i >j.

So, y- t S y = T. From this we see that the spectrum of S and that of Tare
identical. Using Theorem I in [2] we obtain our claims concerning the
spectrum of T, and the form of the eigenvectors of T. This completes the
proof of the lemma.

Since the eigenvalues of T are negative, the matrix T - I is invertible.
Letting r be the vector with components r i = (m - i)/[(i + I)(m + I)J,
i = 1,2,..., m - I, we have the following lemma.

LEMMA 2. Let T, b, d, e and r be as defined above. Then

and d = (T +1)(T - I) - I e.

Proof We show that bT(T - I) = rT. Let qj be the jth component of
bT(T - 1) and note that

qj= ~tl - :~+~ r({) - (7) -Oij]

= ~I r Bi+t (~+I)_~i+I(~+I)]+~j+t
t='t m+1 1+1 J+I/+I J+I

=_1_ r£ B i (m:- I) -Bo-(m+ I)B t]
m + I i=O 1

I r~ (j + I ) . ] Bj+ t-j+1 t='oB i i -Bo-(j+I)Bt+Bj+t +j+I'

Now using the identity L)=o Blj I) = 0 with 1= m - I and j - I we get

qj=Bo C~ 1- m~ I)=(m-j)/[U+ I)(m+ I)J=rj ,
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and the first equation in the lemma is proved. The second equation is a direct
consequence of the relation T(d - e) = d +e.

We note that

bTe=- mfl~j+1 (~)=__I_£Bj(m:l)
j= I J + 1 J m + 1 j=2 J

=- m~ 1 [-Bo-(m+ I)B 1 ] =-(m-l)/2(m+ 1),

and we have the relation

bTe = -(m - 1)/2(2m + 1),

which will be used below.
Our final lemma is the following.

LEMMA 3. Let up and u: be the left and right end vectors of the m th
order delta spline Sp' Then

and

P =t- 0, n (14)

Juo+ T"u~ = -e - d,

Tnun+Ju; = -e - d.
(15)

Conversely, any two (m - 1) vectors up and u: satisfying (14) and (15)
determine a unique m th order delta spline Sp with end vectors up and u: .

Proof For p =t- 0, n let S~ be the mth order polynomial which vanishes at
p - 1 and p and whose jth derivative at p equals j! times the jth component
of TPup , j = 1, 2,..., m - 1. Let S ~ be the m th order polynomial which
vanishes at p and p+ 1 and whose jth derivative at p equals (-I)j j! times
the jth component of Tn-pu:. Then setting

xE [p-l,p],

and

xE [p,p + 1].

we need to match derivatives of order 1, 2,..., m - 1 at p for these two
expressions. Performing the differentiations and matching we get the relation



SPLINE QUADRATURE FORMULAS

hence,

In matrix form this is equivalent to
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j = 1, 2,... , m - 1.

Equation (15) follows from similar considerations at the end points 0 and n.
The converse claim follows from the fact that any solution of (14}-(15)

can be used to construct a delta spline Sp with S~)(i)/j! = Tiup,
. - 1 - 1 S (.) - 0 . - 0 1 - 1 d (-IV SU)(·)!.·, - T,,-i *J - , , m , p I - , I - , ,... , p ,an J p I 'j. - up ,
j= 1, , m - 1, Sp(i) = 0, i =p + 2,p + 3,..., n. While for x E [p - l,p], or
x E [p,p + 1], Sp can be constructed as in the first part of the proof of the
lemma. This completes the proof. We can now give the proof of Theorem 6.

Proof of Theorem 6. We first show that there exists a unique even alter­
nating delta spline at p, p *0, n. If Sp is even alternating and p *0, n,
Ju* = u* and (14) becomes TPu + TP-"u* = -2e hence u + T-nu* =p p p p , p p

-2T-Pe. Multiplying this last equation by J, and using the relations
Jup = up, JT- n = TnJ, Je = e, we get up + T"u: = -2TPe. Subtracting this
last equation from the previous relation involving up and u: we get
(Tn - T- n) u: = 2(T-P - TP) e. Now, T" - T- n= T- n(T2n - I) is inver­
tible by the results on the spectrum of T given in Lemma 1. So, up* IS

uniquely given by

(16)

Conversely, any (m - 1) vector u: given by (16) is even alternating, i.e.,
obeys Ju: = u:. This is easily seen to be the case upon multiplying the right
hand side of (16) by J and using JTP = T-PJ, Je = e, r 1 = J. Similarly, we
arrive at the following unique solution of (14}-(15) for the left end vector up
of an even alternating Sp :

(17)

which again is easily seen to obey Jup = up'
Similarly, we may show, using (15) instead of (14), that there exists a

unique even alternating delta spline at each of the end points 0 and n. The
resulting end vectors are

Uo= u;; = -e + (T" - T-")-l(Tn + T- n
) d,

ut = Un = -2(Tn - T-n)-I d.

(18)

(19)
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Any even alternating spline S may be uniquely represented as a linear
combination of the unique even alternating delta splines by

n

Sex) = .L S(p) Sp(x).
p=O

The end vectors of S are, hence, given by

n

u=2::S(p)up,
p=O

n

u* = .L S(p)u:.
p=O

Substituting (16}-(19) into these two equations we get (8) and (9). From the
above, these are the only possible values that u and u* can have. This
completes proof of Theorem 6.

Proof of Theorem 1. We first show that (1) and (2) hold, then give a
derivation of (3). To this end, let S be the spline of Theorem I, and let S k be
the unique even alternating delta spline at k. Then SO = S - LZ=o S(k) Sk is
a null spline with SOU) =°for j = 0, I,... , n. So,

n

S=So+ L S(k)Sk'
k=O

(20)

From (14) we get Uk + T-nJut = -2T- ke and T-nJuk +ut = -2T- n
+ke.

Adding these two equations we have (I + T-nJ)(Uk + un =
-2(T- k + Tk- n) e. Multiplying by J we get

In a similar way we get the relation

k*O,n.

k*O,n.

(21 )

(22)

For k = 0, n we use Eq. (15) instead of (14) and Lemma 2 to obtain in an
analogous manner

(rn + J)(u k + un = -ern + I) e + (rn ~ I) d

= -ern + I) e + (Tn - I)(T + I)(T - I)-I e (23)

=2(Tn -T)(T-I)-l e, k=O,n,

and

(rn - J)(u k - un = -ern - I) e + (Tn + I) d

= _(Tn - I) e + (Tn + I)(T + I)(T- I)-I e (24)

= 2(Tn + T)(T - I) -I e, k = 0, n.
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For the null spline So with end vectors Uo and uo* the matching condition
clearly is TnuO +Juo * = 0, which leads to

(25)

and

(26)

From (20) we see that u = UO + LZ=o S(k) Uk and u* = uo* +LZ=o S(k) u;.
Combining these relations with Eqs. (21}-(26) we obtain Eqs. (1) and (2).
Since the mth order Euler-McLaurin formula is exact for mth order splines
with equispaced knots, (3) follows, and the proof of Theorem 1 is complete.

We now give an independent proof of (3). From (20) we have

n n n nf S(y) dy = f SO(y) dy + ~ S(k) r Sk(Y) dy,
° ° k=O'O

and we will obtain Eq. (3) by computing the integrals on the right hand side
of this expression. We define Wk= f ~ S k( y) dy, and note that if k *' 0, n,

If k = n the above expression holds without the last term, when k = °it
holds without the term before the last (here L;~o = L;':~ == 0). Performing
the integrations and recalling the definition of the vectors r, up and uJ, we
get for k *' 0, n

W k = 2/(m + 1) + rT [~~ TPu k + n~~1 TPu;1
= 2/(m + 1) + rT(T - I)-I[(Tk -I) Uk + (Tn- k

- I) u;]

= 2/(m + 1) +bT[(Tk
- I) Uk + (Tn- k

- I) ut],

since, by Lemma 2, bT = rT (T - 1) -I.
Now, Jb = b TJ = b T

, so the expression for Wk , k *' 0, n, can be rewritten
as:
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Using Eqs. (13) and (14) we then get

k* 0, n. (27)

By symmetry, Wo and Wn are given by the same expression, and following
the steps in the above computation of Wk , we get

Wn= I/(m+ 1)+rT(T-I)-I(Tn -I)un

= I/(m + I) +bT[Tnun+Ju;] - bT[un + u;].

Using (13) and (15) and noting b Td = 0, we get

so

For the null spline SO we recall that Tnu°+Ju°* = 0, and get

n-l n

= '\' rTuO(p) = rT \-, TP-Iuo
....... -
P~O p~1

= rT(T - I)-l(Tn - I) UO= bT(Tn - I) UO

= bTl(muO+Juo*) - (uo +Juo *)]

= -bT(uO +Juo*) = -bT(uO + uO*).

Collecting this result, (27) and (28) in the expression for the integral, we
get

n n-If S(y) dy = [S(O) +S(n)]/2 + 2: S(k)
° k~1

- bT [uo + uo* + ~o S(k)(Uk +unJ. (29)

Noting that u = UO + LZ~o S(k) Uk and u* = uO* + L~~o S(k) ut, we
obtain Eq. (3). This completes the derivation of (3).

The proof of Theorem 3 proceeds in the same manner as that of
Theorem 1. However, the matching conditions (14), (15) and (25) must now
reflect the fact that the semicardinal spline is integrable. In particular, this
implies that the vectors up(p + 1) and UO lie in the eigenspace of T
corresponding to eigenvalues of modulus less than one, so (I - Q) UO =
(I - Q) up(p + 1) = O. Now, since Tx; = A;X i implies TJx l = JT-IX i =
(I/A;)Jx p we see that (I-Q)x=O is equivalent to QJx=O. So, the
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integrability conditions can be written as, QJuo = QJup(p + 1) = O. The
matching conditions are readily seen to be

PUp - T-1up(p + 1) = -2e, p =1= °
U o- T- 1uo(l) = d - e.

With this, we can now give the proof of Theorem 3.

Proof of Theorem 3. For a semicardinal spline S we have
00

Sex) = SO(x) + L S(k) Sk(X),
k=O

(30)

(31 )

where SO is a null semicardinal spline and Skis a semicardinal delta spline.
In particular, the Sk can be taken to be the natural semicardinal fundamental
functions (see Lecture 8 in [3 j), in which case by the results in the same
reference the series in the above equation converges locally uniformly and
absolutely, and the integrability of S implies that L~ Sen) Sk is integrable
(hence, so is SO), and the integration can be performed termwise. So,

Now, these integrals can be computed in the same manner as in the proof of
Theorem 1, and lead to the expressions:

the convergence of the infinite series following from the fact that the vector
uk(k + 1) belongs in the eigenspace of T corresponding to eigenvalues with
modulus less than one. So, (30) and (31) imply

tOO Sk(X) dx = 2/(m + 1) + rT(T- 1)~1 [(Tk - 1) Uk - T-1Uk(k + 1)]

= 2/(m + 1) +bT[Tkuk - T-1Uk(k + 1) - Uk]

= 2/(m + 1)+b T \[-2e- uk]' k~O,
Id - e - uo, k - 0,

k =1= 0,
k=O.

Also,

foo SO(x)dx=rT i: TPuO=rT(T-1)-luo=-bTuO.
° p=O
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Combining these expressions, we get

(" S(X) dx = ! S(O) + k~1 S(k) - b
T lU

O + k~O UkS(k)].

Since u = U
O + L~=o ukS(k) = U

O + L~I S(k)[Tk-IUk(k + 1) - 2T- ke] +
S(O)[T- Iuo(1) + d-e] and using the facts that QJuO= QJup(p + 1)=0,
and QJT-p-I = TP+IQJ, we obtain Eqs. (5) and (7) of Theorem 3. This
completes the proof of Theorem 3.

The proofs of the rest of our results are based on Theorem 7, whose proof
we next present.

Proof of Theorem 7. We first note that (10) and (11) are equivalent. In
fact, if (11) holds, then since Tk = L;:-/ A7 Pi' k an integer, then bTTke =
- L~=-/ A7/2(m + 1), and (10) follows since F(T) has a convergent expan­
sion in powers of T. Conversely, let (10) hold, then -2(m + l)bT TkE=
L~=-/ -2(m + 1) bTPieA7 = L~:JI A7 = Trace Tk, holds for all integers k.
Now, the eigenvalues Ai are all distinct, so, since Al = I/Am_l' multiplying
by A~(IAII<IAil for i=l=l) and letting k-too, we get -2(m+l)bTP l e=
limk~CXl L~=-/ -2(m + 1) bTPie(AiAI)k = limk~CXl L~=-/ (AdAm_l)k = 1. Re­
peating this with A2 , ... , Am _l' we see that (11) holds.

We now introduce some notation that will be used in the rest of the proof.
Let z and 1 be (m - 1) column vectors with components

and let h = e +d, so hi = (7). Let A and B be the (m - 1) X (m - 1)
matrices with entries au = ({) and bu= -(7), with (() = 0, if i >j. Clearly,
T = A +B, and we state four identities which will be used in completing our
proof. These are

2(m + 1) bTrne = (m + 1) rTTn-lh = 1TTn-Iz, (32)

1TA nz = -(n + 1) Trace(A nB) _ Trace(A n+ I)

n-I
+ L Trace(A n-i) Trace(A iB), (33)

i=O

Trace rn+ I = (n + 1) Trace(A nB) + Trace(A n+ I)

n-I
+ L Trace(rn-i-An-i)Trace(AiB) (34)

i=O

and

(35)
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Before giving the proof of (32}-(35) we show how they lead to the proof
of the theorem. From (32) it is seen that all we need to show is that

-Trace Tn = 1Tr -IZ for all n = 1, 2,... (36)

(recall that from (10), 2(m+I)bTe=-(m-I)=-Trace:f'l), since (36)
implies that 2(m + 1) bTre = -Trace Tn for all such n. But, from (36),
2(m + 1) bTT-ne = 2(m + 1) b TJrJe = 2(m + 1) bTTne = -Trace Tn =
-Trace T- n, and (36) implies the same relation holds for n = -1, -2,.... In
turn these relations imply that (10), hence, (11) holds. We now prove (36)
by induction.

For n = 1, we have to show that -Trace T = 1T Z. Now, 1T Z =
L:::l1C:\) = L:~=-02 (7) = 2m

- m - 1. Also,

- Trace T = 1:I [( ~ ) - (~ ) ] = I I (~.) - m + I = 2m - m - I,
1=1 / /. I~l /

and (36) holds for n = 1. Assume that it holds for i ~ n. Then from (34) we
get

-Trace m+ 1 = -en + 1) Trace A nB - Trace A n+ 1

n-l

+ L (Trace A n - i)(Trace A iB)
i=O

n-l

- L (Trace r- i) Trace A iB,
i=O

and using (33) and the induction hypothesis, this yields

n-I

-Trace Tn+1 = ITAnz + L (lTr-i-1Z) Trace AiB.
i=O

Using (35) we now get

[

n-l ]
-TraceTn+1=lT A n +?= AiBr- i

-
1 z

1=0
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This completes the induction and the proof of (36) for n = 1,2,.... From
what was already established, the proof of Theorem 7 will be completed once
relations (32)-(35) are proved.

We start by proving the first equality in (32). Recall that from Lemma 2,
bT(T - I) = rT, and hence,

bTTne=bT(T-I) Tn(T-I)-1 e=rTTn-1T(T-I)-1 e.

So, we need to show that 2T(T - I) -I e = h, or else, 2e = (T - I) -1 h. In
fact,

2T(T-I)-1 e = (T+ I)(T-I)-I e + (T-I)(T-I)-I e = d + e = h.

This establishes the first equality in (32).
In order to prove the second equality (32) we start by noting that

t ..h. = [ (j) _ (m) ] (m) = (f) ( m) _ (m) ( m )
I} } i i j i m-j i m-j

= (~)[ (:=;) -(m~j)] =hJm-j.m-i·

Using this relation, we get

m-I m-I m-I

(m + I) rTTn-1h = L L ... L (m + I) rSJS,S2ts2s3 ... tSn_lsnhsn
s,=1 s2=1 sn=1
m-I m-I

= L ... L (m + I) rSlhsJm-s2.m-s, ... tm-sn.m-sn_,
sl=1 sn=1
m-I m-I

= L ... L (m + I) rm-unhm-untun_,.un·" tUI .U2 ·
Ut=l un=l

Noting that

U (m )m+lr h =m+1 n( ) m-un m-un ( ) (m - un + I)(m + I) m - Un

( m )- -z- Un - 1 - Un'

we get

m-I

(m + I) rTTn-1h = L
u,=1

m-I

L

which is the second equation in (32)
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We next note that, if G = (glj) is an (m - 1) X (m - 1) matrix, then
Trace(GB) = - L~;=\ gij(j) = -1 T Gh. Also, if H = (hij)' is an (m - 1) X
(m - 1) matrix, then (Trace(GB» 1THz = (- Li,j gij('j»(Lk,/ hk/e':!l» =
-Li,j,k,/gij('j)hk/(/':!!)=ITGBHz. In particular, letting G=A i and
H = Tj, we get Eq. (35). Finally, we note that

Trace(GBHB) = .4= gij ( ~ ) hk/ ( 7) = (~ gij ( ~) ) ( L hk/ ( 7) )
I.J,k./ J I.J J k./

= (Trace GB)(Trace HB).

We now give the proof of (33). We see from the above that Trace(A nB) =
_ITAnh=-L~=Jl [(n+ 1)i_ ni)(7), since the ith entry in ITA n is
(n + 1)i - ni, which can be seen from the following simple inductive
argument. For n = 0, ITA 0 = I T, and the ith entry is one, satisfying the
above relation. Assuming that the relation holds for (n - 1), we have

m-l .
(lTAn)i=(ITAn-IA)i= L [n k -(n-l)k] ( /)

k=l k
i .

= {;o [n k -(n-l)k] (~)

= (n + 1)i - ni
,

so the formula holds for all n ~ O. Hence,

Trace(AnB) = ~O [(n + 1)1 - nil (7) + (n + 1)m - nm

= -(n + 2)m + 2(n + 1)m - nm.

Next, we note that Trace An = L~=-/ CY = m - 1, since A is tridiagonal
with diagonal entries <D = 1. So,

n-I
-(n + 1) Trace(A nB) - Trace(A n+!) + L Trace(A n- I) Trace(A IB)

1=0

n-l
- L (m-l)[(i+2)m-2(i+1)m+imj

i=O

= (n + 1)[(n + 2)m - 2(n + 1)m +nm]

[
n+l n n-! J

- (m - 1) 1 + t;2 i
m

- 2 t;! i
m+ t;o i

m

= (n + 1)[(n + 2)m - 2(n + l)m + nm]- (m - 1)[(n + l)m - nmj.
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We will now show that this last expression is also equal to ITA nz, and
hence, that (33) holds. This is again a simple computation:

ITAnz= 1:1

[(n+ I)i_ni] (.: )
i= 1 I 1

= (n + I) [to (n + I)i ( ~) - men + 1)m-I - (n + 1)m]

= (n + I)[(n + 2)m - men + 1)m-1 - (n + 1)m]

- n[(n + 1)m - mnm- I - nm]

= (n + I)[(n + 2)m - 2(n + 1)m + nm]

- (m - I)[(n + I)m - nm],

which is the desired equality. This proves that (33) holds.
We finally come to the proof of (34). We first show that

n n-l

Tn+1 = LAiBA n-i +A n+ 1 + 2..: (Tn- i - An-i) BA i, n = 0, 1,2,.... (37)
i=O i=O

It is clear that (37) holds for n = 0 and n = I, each of the sides of the
equation reducing to A + B if n = 0, and to A 2 + B 2 + AB + BA if n = I.
Assuming that (37) holds for n = k, we see that

TlHI)+1 = (A +B) Tk+1= (A +B) [to AiBA k- i +A k+1

+ ~~ (Tk- i _Ak-i)BA i ]

k k

= L Ai+IBA(HI)-(i+ll + L BAiBA k- i +A(k+I)+1
i=O i=O

k-I k-I
+BA H1 + L (Tlk+ll- i _A(k+ll-i)BA i - I BAk-iBA i

i=O i=O
k+1

= L AiBA(HI)-i -BA H1 +B 2A k +A(k+I)+1 +BA H1

i=O
k

+ 2:: (T(k+l)-i _A(H1l-i)BA i - (T-A)BA k
i=O

k+1 k
= L AiBA(k+l)-i +A(k+I)+1 + I (T(k+ll-i _A(k+ll-i)BA i•

i=O i=O
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So, (37) holds for n = k + 1, and hence, for all n = 0, 1,2,.... We now obtain
Eq. (34) by taking the trace of both sides of Eq. (37). We note that
Trace(A iBA n-i) = Trace(A nB), and that

n-l n-l

L: Trace[(rn- i _An-i)BA i] = L Trace(Tn- i _An-i) Trace(AiB).
i=O i=O

(38)

The first relation follows from the fact that Trace(CD) = Trace(DC) for all
square matrices C and D, while the second can be obtained by writing the
terms of (rn- i - An-i) BA i in the form (F/A, B) BAj)(BA i), where F/A, B)
is a product involving only matrices A and B and is of total order n­
i - j. Then Trace [(F/A, B) BAj)(BA i)] = Trace(A iF/A, B) B) Trace(AjB) =
Trace(F/A, B) BA i) Trace(AjB), which follows from the relations
Trace(CD) = Trace(DC) and Trace(GBHB) = Trace(GB) Trace(HB), which
was already established. Using this, it is seen that both sides of (38) are
sums of terms of the form Trace(Fj(A, B) BA i) Trace(AjB), and that there is
a one to one onto correspondence between these terms on both sides of (38).
So, (38) holds, and using it on taking the trace of both sides of (37) we get
Eq. (34).

Equations (32)-(35) have now been established, and hence, the proof of
Theorem 7 is completed.

We now give the proofs of Theorems 2, 4 and 5.

Proof of Theorem 2. From Theorem 6, we know that if S is an even
alternating spline it has the unique representation S = I:Z=o S(k) Sk' where
Sk is the even alternating spline satisfying SkU) = ~kj' From (21)

ki=O,n.

ki=O,n,

Hence, since Sk is even alternating (/ + Tn)(uk + un = -2(Tk + T n- k) e,
and using the invertibility of (/ + Tn) and Eq. (10) of Theorem 7, we now get

1 m-l A,k +An - k

bT(u +u*)=-2bT(/+ rn)-I(Tk + Tn-k)e= __ ",' i i
k k m + 1 t:l 1 +A7

2 ~l A7- k +A7
m + 1 i=(m+ll/2 1 +A7 '

since AiAm - i = 1. So, using Eq. (3), we see that we have computed the
weights Wk , k i= 0, n, in the quadrature formula for even alternating splines
to be

640(42/3-3

2 m-l A~-k + A~

Wk=l--- L I I

m + 1 i=(m+ 1)/2 1 +A7 '
ki=O,n.
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The weights Wo and Wn , can now be computed by noting that S(x) = 1 is
an even alternating spline, hence

n nf dx = n = 2: Wk = Wo+ Wn
o k=O

n-I [ 2 m-I A~-k + A~]+2:1--2: I n
l

•

k=1 m + 1 ;=(m+I)/2 1 +k

So,
2 m-l n-I

Wo+Wn=n-(n-l)+-- 2: 2: (A?-k+ A7)
m+ I ;=(m+I)/2 1 +A? k=1

2 m-I 2 [k-A~J=1+-- 2: I I
m + 1 ;=(m+ 1)/2 1 + A? 1 - A;

4 m-I A~-k

=1+-- 2: In I
m+ 1 ;=(m+I)/2 (1 +A;)(A;-I)

By symmetry, Wo = Wn , so each is given by

12 m - I A~-k
-+-- 2: In I

2 m+ 1 ;=(m+I)/2 (1 +A;)(A;-I)

This completes the proof of Theorem 2.

Proof of Theorem 4. Since S is even alternating and integrable,
fgo S(x) dx = limb-->oo f~ S(x) dx, and S(b) -40 as b -400. So, using equation
(3) to evaluate f~ S(x) dx and noting that IA;I > 1 for (m + 1)/2 <; i <; m - 1,
the formula of Theorem 4 follows directly by taking the limit as b -4 00. This
completes the proof of Theorem 4.

Proof of Theorem 5. The result is immediate for the asymptotic form of
the weights in Theorem 4. For, since A; < -1 when i = (m + 1)/2,
(m + 3)/2,..., m - 1, IAjjl < 1, 1 <;j < 00, and Il/(A; - 1)1 < 1/2, implying
that 1/2 + 2/(m + 1) L~=(~+ 1)/2 1/(A j - 1) > 0, and 1 - 2/(m + 1)
X L7'=(~+ 1)/2 Aj j > O. So, the weights in the formula of Theorem 4 are all
positive.

The proof for the weights given by formula (4) of Theorem 2 is only
slightly more involved. First, if 1 <;j <; n - 1, we note that

IA?-j + A{jjIA? + 11 = 1(-1)n IAil n-
j

+ IA;l
j
l/I(-lt IA;ln + 11

= IIA;I-n/2+j + (_I)n IAiln/2-jI/IIArn/2 + (-1 t !Ail
n/21 < 1,

since the functions IA;l x + IA;I-x and IAilx -IA;I-x are monotone increasing
for IA;I > 1, and In/2 -jl <; n/2 - 1 < n/2. This implies that 1 - 2/(m + 1)
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x L~=(~+ 1)/2 (A.7- j
- A.{)/(A.7 + 1) >0, for 1 ~j ~ n - 1. For j = 0, n, and n

odd, we have 1,1.7-,1.;1 < 1,1.7+ 11, and since 11/(,1.;-1)1 < 1/2 we have

12 m - I

-+-- L: (,1.7-,1.;)/[(,1.7+ 1)(,1.;-1))
2 m + 1 (m+I)/2

2 m-I

> 1/2 - -- L: (1/2) ~ O.
m + 1 ;=(m+I)/2

If n is even, we note that

Now, since ,1.;<-1,1,1.7-,1.;1<1,1.7+1-11 follows from the fact that the
polynomial function x n + I + 1 - (x n + x) is positive for x > 1; and
1,1.7+ 1_ 1- ,1.7 + ,1.;1 = 1,1.7+ 1_ 11 + 1,1.7 - ,1.;1 > 21,1.7 - ,1.;1. So,

++~ II (,1.7-,1.;)/[(,1.7+ 1)(,1.;-1))
m + ;=(m+ 1)/2

12 m - I A.~-A..
>---- L: 'n I ~O.

2 m + 1 ;=(m+l),2 21,1.; -,1.;1

Hence, the weights are positive in this case also and the proof of Theorem 5
is completed.

With this we have completed the proofs of all the results that were
presented in Section 2. In the next section we will give some numerical
results based on our theorems and some discussion of related results.

4. NUMERICAL AND RELATED RESULTS

This section is devoted to the presentation of some sample computations
of the explicit quadrature weights that we derived for even alternating splines
as well as of some related results. We start by looking at an obvious coun­
terpart of the even alternating splines. We define an m th order spline S to be
"odd alternating" if S(2j -I)(0+) = S(2j-I)(n-) =0, for l~j~(m-l)/2,

m> 2 an odd integer. We have the following analogue of Theorem 6 whose
proof is omitted since it is similar to that of Theorem 6.

THEOREM 8. Under the same conditions as in Theorem 6, except that S
is assumed to be odd alternating instead of even alternating, the end vectors
u and u * of S satisfy
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u=_(Tn_T-n)-1 [2 t: S(p)(Tn-p+"TP-n)e-2S(0)e

- S(n)(Tn + T- n) e1- S(O) d,

u* = _(Tn - T-n)-I r2 t: S(p)(TP + T-P) e - S(O)(Tn + T- n) e

- 2S(n) eJ- S(n) d.

From the Euler-McLaurin formula it is clear that the trapezoid rule is an
exact quadrature formula for odd alternating splines.

We now look at the mixed case of "even-odd splines," which are defined
by the restrictions S(2

j )(0+) = S(2
j -I)(n-) = O. The formula for the end

vectors of such splines are given in the following theorem.

THEOREM 9. Under the same conditions as Theorem 6, except that S is
assumed to be even-odd alternating instead of even alternating, the end
vectors u and u * of S satisfy

u = _(Tn + T-n)-I r2 ::-,: S(k)(Tn- k + T k
-

n) e

- S(O)(Tn - T- n) d + 2S(n) e] - S(O) e,

u* = _(Tn + T-n)-I [2 ~: S(k)(Tk + T- k
) e

+ 2S(0) d + S(n)(Tn - T- n) e] + S(n) d.

The quadrature formula for S is

(39)

(40)

(41 )

(S(x)dx=~: S(k) rl-(2/(m+1)) (m~:/2 (A7- k + Af- n)/(A7+ Ajn)]

+ S(O) [ 1/2 - (2/(m + 1))

(m-I)/2 ]

X (;1 (A;n - Ai )/ {(A;n + 1)(Ai - I)}

[

(m- 1)/2 1
+ S(n) 1/2 - (2/(m + 1)) (;1 1/(A7 +Ai

n
) .
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(42)

Proof We shall sketch the main lines of the proof since it is similar to
that of Theorems 1 and 6. Now, let u and u* be even and odd alternating,
respectively. Then, using Ju = u and Ju* = - u*, (14) and (15) yield for an
even-odd delta spline Sp at p (see the proof of Theorem 6):

u: = 2(rn + T-n)-I(T-P - TP) e, p 01= 0, n,

up = -2(Tn+ T-n)-I(Tn-P + TP-n) e, p 01= 0, n,

and

Uo= -e + (Tn + T-n)-I(Tn - T- n) d, ut = -2(Tn + T-n)-I d,

Un = -2(r + T-n)-l e, u: = -ern + T-n)-I(Tn - T- n) e + d.

Substituting (42) and (43) into the relations

(43)

u* = I S(p) u:'

we obtain (39) and (40).
Now, the quadrature formula (41) can be obtained by adding (39) and

(40) and using the Euler-McLaurin formula (3). When this is done, we get
(b Tu * = 0, since u * is odd alternating)

n n-lf Sex) dx = L S(k) + (S(O) + S(n))/2 - bTU
o k= 1

n-l

= L S(k)[l + 2bT(rn + T-n)-I(Tn- k + Tk-n)e]
k=l

+ S(O) [1/2 - bT(rn + T-n)-l(rn - T- n) d +bTe]

+ S(n)[1/2 + 2bT(rn + T-n)-l e].

Using the relation d = (T + I)(T - I) - 1 e and Theorem 7, we obtain
Eq. (41) in the same manner as used to obtain Eq. (4) of Theorem 2. This
completes the proof of Theorem 9.

We now give an explicit formula for the null spaces of the operators
r +J and Tn - J appearing in formulas (1) and (2).

THEOREM 10. Let S be an mth order spline on [0, n] with knots at the
integers 0, 1,..., n, n ~ 1. Let ii and ii * satisfy (1) and (2). Then there exist
even alternating vectors a and b such that

u = ii + (rn - I) -I a + (Tn + I) -1 b,

u* = ii * + (rn - I) - 1 a - (rn + I) - 1 b,

(44)

(45)
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and conversely, for any pair of even alternating vectors a and b, u and u* as
given by (44) and (45) are solutions of (1) and (2).

Proof The verification of the fact that any u and u* satisfying (44) and
(45) also satisfy (1) and (2) is done by direct substitution and is omitted.

For the converse, let u and u* satisfy (1) and (2) and define a and b by

a = (Tn - I)[(u + u*) - (0 + 0*»),

b = (Tn + I)[(u - u*) - (0 - 0*»).

TABLE I

Weights Wh,m •• of the Quadrature Formulas for
the mth Order Even Alternating Spline on [0, n]

n=2

m k = 0 and 2 k=1

3 0.37500000 1.2500000
5 0.36458333 1.2708333
7 0,36351103 1.2729779
9 0,36339465 1.2732107

II 0,36338182 1.2732363
13 0,36338040 1.2732392

n=3

m k = 0 and 3 k = I and 2

3 ooסס0.4000 1,10000000
5 0.39743590 1.10256410
7 0.39734577 1.10265423
9 0,39734235 1.10265765

II 0.39734222 1.10265778
13 0.39734221 1.10265779

n=5

m k=Oand5 k= 1 and 4 k = 2 and 3

3 0.39473684 1.13157895 0.97368421
5 0.38789436 1.14841617 0.96368945
7 0.38676028 1.151373825 0.96186590
9 0.38655478 1.151911686 0.96153353

11 0.38651715 1.152010202 0.96147264
13 0.38651025 1.152028283 0.96141647
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From this it is readily seen that u and u* satisfy (44) and (45), so it remains
to show that a and b are even alternating, that is, Ja = a and Jb = b. Now,

Ja = (T- n
- I)J[(u +u*) - (u + u*)]

and
Jb = (T- n + I)J(u - u*) - (0 - 0*)].

Since (u + u*) and (u +u*) both satisfy (1) we also have

(rn +J)[(u + u*) - (u +0*)] = 0,

and similarly from (2) we get

(Tn - J)[(u - u*) - (u - 0*)] = 0.

So,
J[(u +u*) - (0 + u*)] = -rn[(u +u*) - (0 - u*)]

and

J[(u - u*) - (0 - u*)] = rn[(u - u*) - (u - 0*)].

(46)

(47)

Using these relations in (46) and (47) we see that Ja = -a and Jb = -b, that
is, a and b are even alternating. This completes the proof of Theorem 10.

We now present Tables I and II, which give computations of the weights
in the quadrature formulas for even alternating splines. These weights are

TABLE II

Weights Wk •m of the Quadrature Formulas for the
mth Order Even Alternating Semicardinal Spline on 10, 00)

S 3 7 9 13

1 0.39433757 0.38327658 0.38209248 0.38107220
2 1.13397460 1.16674594 1.17101836 1.17485423
3 0.96410162 0.92459288 0.91755264 0.91073966
4 1.00961894 1.03880320 1.04660910 1.05507353
5 0.99742261 0.97941944 0.97233813 0.96351465
6 1.0069061 1.01099310 1.01668334 1.02492993
7 0.99981495 0.99411846 0.98988375 0.98272207
8 1.00004958 1.00314892 1.00614518 1.01205473
9 0.99998671 0.99831502 0.99626485 0.99156291

10 oo356סס1.0 1.00090193 1.00227074 1.00591395
11 0.99999905 0.99951721 0.99861944 0.99585170
12 1.00000026 1.00025843 1.00083937 1.00291078
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explicitly given by Theorems 2 and 4. In these tables, Wk,m,n is the kth
weight, 0 ~ k ~ n, in the quadrature formula of the mth order even alter­
nating spline on [0, n]. These weights are very simple to compute and the
tables are provided for illustrative purposes only. The tables clearly show
convergence, as expected, to the semicardinal case as n -+ ro. Moreover,
based on computations of the weights as well as analytical considerations,
we also believe that the weights converge as m -+ ro to those obtained by
integrating the function fk(X) = a +bx + r..t:/ ci sin(inx/n), with a, band ci

chosen that fkU) = ()jk' If this conjecture holds, it would serve to distinguish
the present formulas for even alternating splines from the semicardinal
formulas of Schoenberg and Silliman [4], derived from natural splines. The
values of the zeroes of the Euler-Frobenius polynomials that were used in
computing the tables of weights are those given in Schoenberg and
Silliman [4].
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